The Mission of the China Seismo-Electromagnetic Satellite

China National Space Administration (CNSA) China Earthquake Administration (CEA) Italian Space Agency(ASI)

November 2014

CONTENTS:

- 1 | Scientific Background 4 | Mission Objectives 6 | Mission Specifications 8 | The Overall Architecture 12 | Data Products

/ arthquake is a very complex phenomenon with a long preparation process, however due to the low incidence of earthquake, especially the strong ones, so it is one of the most difficult challenges in the world. The positive aspect is that from several days to several hours before the shocks, some abnormal phenomena will occur, such as electromagnetic emissions in a wide frequency range, perturbations of ionospheric parameters, anomalies on the records of VLF transmitter signals and particle precipitation, which can be considered as earthquake precursors. Although we can not understand the mechanism completely, it is true that the electromagnetic emissions from the epicenter can propagate to the ground and up to the ionosphere, and can be observed by ground observation station and low-altitude satellites. So it is possible to detect all these abnormal phenomena by using satellite, and it is very helpful for us to understand the mechanism of earthquake and earthquake prediction.

1

The abnormality on May 9 of local TEC and foF2 before the

Wenchuan earthquake on May 12, 2008.

In the past ten years, many electromagnetic related anomalies to earthquakes have been observed by space based monitoring system. Combined with the ground based monitoring networks, will it improve the detecting abilities of abnormal information which is related to earthquakes.

The abnormality of electric field before the Wen-chuan earth-quake during May 6 and

We are also developing some models and trying to find the mechanism of LAI, such as the model of EM Wave penetrating into the ionosphere from ground.

The model of EM Wave penetrating into the ionosphere from ground

China Seismo-Electromagnetic Satellite (CSES) is proposed to be the first experimental satellite for earthquake-related electromagnetic emission monitoring from ionosphere and make technical preparations for future operational satellite monitoring system in China. It is planned eight scientific payloads assembly, which will be used to monitor the electromagnetic field and its disturbance, the ionospheric environment, and to obtain the structure changing information of ionosphere below the satellite altitude. CSES Satellite will provide an approach on studying the electromagnetic disturbances related to earthquakes, recognizing the regularity and mechanism of ionosphere disturbance and studying the space physics and the interactions of atmosphere-ionosphere-lithosphere.

The 1st CSES is schedule to be launched before the end of 2016, with its life time of 5 years.

CSES is proposed to acquire the

earthquake-related ionospheric disturbance. Its main scientific objectives can be described as following aspects. To obtain world-wide data of space environment of the electro-magnetic field, ionospheric plasma and energetic particles

> To study ionospheric perturbations which may be associated with earthquake activity, especially with those destructive ones

To support the research on geophysics, space sciences as well as electrical wave science and so on To provide the data sharing service for international cooperation and scientific community

To monitor

ionospheric

perturbations in

real-time when the

satellite pass over

the Chinese territory

and the area close to

the borders

To study the mechanism of Lithosphere-Atmosphere-Ionosphere coupling

CSES

Physical parameters to be detected

CSES detecting the magnetic field and electric field of the earth, the in-situ plasma and tomography in ionosphere and the energetic particles and so on. The main detection content and its specifications are shown in the table.

Detection Contents	Physical Parameters	Specifications	
Electro magnetic field	Electric field	DC~3.5MHz	
Electro-magnetic field	Magnetic field	DC \sim 20kHz	
	TEC	-	
	lon density	5×10^{2} /cm 3 \sim 1 $\times 10^{7}$ /cm 3	
	lon temperature	500K \sim 10000K	
lonospheric plasma	Ion Components	O ⁺ , H ⁺ , He ⁺	
	Electron Density	5×10^{2} /cm 3 \sim 1 $\times 10^{7}$ /cm 3	
	Electron temperature	500K~10000K	
STORAGE STOR	Proton Spectrum	3MeV~200MeV	
Energetic particles	Electron Spectrum	200KeV~10MeV	
	Pitch Angle	_	

The Orbit Parameters

Style of orbit	Sun synchronous orbit	
Attitude Control	three-Axis Stabilized	
Altitude	\sim 500km	
Inclination	~97.0°	
Local time of descending node	14:00pm	
Revisiting period	5 days	
Life Span	≥5 years	

The Overall Architecture

CSESmissionconsistsSatellitesystem,Rocketsystem,Launch sitesystem,Telemetryand Tele-Commandsystem,Data receiving systemandData application system.

Satellite Platform

Satellite Platform subsystems include:

- A. Structure and Mechanic Subsystem(SMs);
- B. Attitude and Orbit Control Subsystem(AOCs);
 - Power Supply Subsystem(PSs);
- D. On-board Data Handling Subsystem(ODBHs);
- . Thermal Control Subsystem(TCs);
- Tracking, Telemetry and Command Subsystem(TTCs).

The preliminary design of CSES will adopt CAST-2000 platform with eight payloads onboard. In order to achieve high accuracy electromagnetic field detecting, a strict EMC is adopted to the satellite platform and each payload. **Payload Assembly**

To achieve the observation objective in terms of electro-magnetic field, plasma and energetic particle, 8 different payloads are onboard, namely Electric field detector, Search-Coil Magnetometer, High Precision Magnetometer, GNSS Occultation Receiver, Tri-Band Beacon, Plasma Analyzer, Langmuir Probe, Energetic Particle Detector. The data transmission via X-band, which could accomplish coding, storage, modulation and transmission of payload information.

tellite

Syster

CSES

2007	Detection Contents	Physical Parameters	Payload	Developing Institutions
2	Electric Field Intensity		Electric field detector	Lanzhou Institute of Physics, CAST
	Electro- magnetic field		Search-Coil Magnetometer	Beihang University
		Magnetic Field Intensity	High Precision Magnetometer	Center for Space Science and Application, CAS, together with Austria Space Institute
		Total Electron Content	GNSS Occultation Receiver,	Space Star Technology Co., Ltd.
		electron density profile	Tri-Band Beacon	Institute of Electrical Wave Propagation of China
	Plasma	Ion Density Ion Temperature Drifting Velocity Ion Components	Plasma Analyzer	Center for Space Science and Application Research, CAS
		Electron Density Electron Temperature	Langmuir Probe	Center for Space Science and Application Research, CAS
		Proton Energy Spectrum, flux		
	Energetic articles	Ion Energy Spectrum, flux particle identification Pitch Angle	Energetic Particle Detector	Institute of High Energy Physics, CAS; Italian National Institute of Nuclear Physics
	199) 	X ray energy spectrum		

The Overall Architecture

The Overall Architecture

Ground segment of CSES

Ground Segment

Data Receiving System

The Data Receiving System was designed to fulfill the task of data receiving, data management, data preprocessing and data transferring to data application system.

The Data Receiving System includes 5 data receiving stations, namely Beijing, Mudanjiang, Kashi, Sanya and Kunming. It has the ability to receive, preprocess and manage the real-time and non-real-time monitoring data of the electromagnetic field and ionosphere all over the world.

Data application System

To fulfill the operation and management requirements of CSES.

To verify and evaluate the data from the satellite.

Main

Tasks

To process the data and produce different level data according to the scientific data processing level.

To extract the seismo-electromagnetic signals around earthquakes of $Ms \ge 6$ within Chinese territory and its neighboring area and $Ms \ge 7$ in globe. To test the possibility for short-term earthquake forecasting experimentally in terms of satellite observation.

To study the LAI coupling mechanism by using CSES data.

To provide data sharing for other scientific research, such as space weather, meteorology, aerospace, Navigation and communication.

The data of CSES are classified into raw data, standard data and application data.

Data Distribution and Share Policy

- CSES Data Application Center is responsible for data distribution
- Level 2 scientific data shall be free for scientific and public affairs
- Accessing to the data shall be authorized